Reduced root cortical cell file number improves drought tolerance in maize.

نویسندگان

  • Joseph G Chimungu
  • Kathleen M Brown
  • Jonathan P Lynch
چکیده

We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ(18)O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.

An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereb...

متن کامل

Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).

Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and ...

متن کامل

Large root cortical cell size improves drought tolerance in maize.

The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes...

متن کامل

Root cortical burden influences drought tolerance in maize.

BACKGROUND AND AIMS Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than...

متن کامل

Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.)

In this study we test the hypothesis that maize genotypes with reduced crown root number (CN) will have greater root depth and improved water acquisition from drying soil. Maize recombinant inbred lines with contrasting CN were evaluated under water stress in greenhouse mesocosms and field rainout shelters. CN varied from 25 to 62 among genotypes. Under water stress in the mesocosms, genotypes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 166 4  شماره 

صفحات  -

تاریخ انتشار 2014